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Abstract

An analytical solution of the problem of the pressing of an incompressible elastoviscoplastic material between two rigid coaxial
cylindrical surfaces is obtained using the theory of large strains. The velocity of motion of the elastic core, the change in the
dimensions of the zones of irreversible deformation and the stresses and strains both in the elastic core and in the flow region are
calculated as a function of the variable pressing force.
© 2006 Elsevier Ltd. All rights reserved.

Exact solutions of the rectilinear motion of a viscoplastic medium,'-?> which has already become classical, have
served as a reliable basis for testing algorithms and programs for numerical calculations in non-linear boundary-value
problems with unknown moving boundaries (the boundaries of the stagnation zones and the surfaces of rigid cores).
In cases when it is not possible to neglect the elastic properties of the material (the calculation of the residual stresses,
the prediction of the geometry of the constructions after manufacture, etc.), the analytical solution obtained below for
an elastoviscoplastic material can serve the purpose of testing the appropriate calculation procedures.

1. Initial model relations

The basic hypothesis for constructing a model of large strains is the separation of the observed total strains into
experimentally non-measurable reversible and irreversible components. It was assumed in Ref. 3,4 that the irreversible
strains can only be stored in a material under conditions in which the stress states correspond to loading surfaces in
stress space, while during unloading or irreversible strain the components of the inverse strain tensor vary as if the
body had rigidly displaced. This assumption enables us to specify more exactly the differential equations of the change
(transfer Ref. 5) of the tensors of the component strains: the reversible strain e¢;; and the irreversible strain p;;, which
must be assumed by the definitions of these tensors. In a Cartesian system of coordinates, these equations can be written
as follows?:
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Here u; and v; are the components of the displacement and velocity vectors of points of the medium, ; will be called
the components of the tensor of the rates of plastic deformations, in accordance with the classical theory of plasticity,
and r;; are the components of the rotation tensor, which depend, in its non-linear part, on the reversible strains and
rates of deformation. There is an explicit expression for Fj; in Ref. 3. According to Egs. (1.1) the components of the
total Almansi strains can be represented in terms of the components of the constituent tensors e;; and p;; in the form

1 1
d; = E(ui,j FUj =W Uy ) = et pii— 5€ik€kj ~ €ikPij ~ PikCij + €ikPrsesj (1.2)

Using Egs. (1.1), as a consequence of the first law of thermodynamics we can obtain the following analogues of
Murnahan’s formula

ow
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Here we have taken into account the condition of incompressibility of the medium, and P and P; are additional
hydrostatic pressures. Henceforth we will assume that the medium is isotropic and we will taken the following relation
for the elastic potential of the medium
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where ., b and x are constants of the material, L; and L, are invariants of the Almansi tensor, and /1 and /; are invariants
of the reversible strain tensor. This choice of invariance enables us to take the limit from the second relation in (1.3)
to the first relation as the irreversible strains approach zero.

We will define the dissipative mechanism of the deformation by specifying the load surface in the form

max|c; - G| = 2k+2nmax|£fl (1.5

Here k is the yield point, r is the viscosity coefficient, o; are the components of the principal stresses and 8,f are the
components of the principal rates of plastic deformation.

As in the classical theory of plasticity, we will assume the conditions of the Mises maximum principle. The load
surface (1.5) is then the plastic potential, and the relation between the rates of irreversible strains and the stresses is
established by the associated law of plastic flow

of

e = Ka?..’ f(o,€) =k A>0 (1.6)
uy



A.A. Burenin et al. / Journal of Applied Mathematics and Mechanics 70 (2006) 437-445 439

The plasticity condition (1.5) is an extension of the Tresca plasticity condition to the case when the viscous properties
of the material in plastic flow are taken into account, and it can be considered as the fundamental relation of the model
of an isotropically hardened plastic solid.®’

2. The initial elastic equilibrium

Suppose an incompressible elastoviscoplastic material, the deformation properties of which are described above,
forms a plug in the space between two rigid coaxial cylindrical surfaces r=ry and r=R (ro <R) of height I. We will
investigate the conditions under which, by creating a pressure on one side of the plug, it can be moved along the
cylindrical surfaces as a result of plastic flow of the material of the plug in the surroundings of these surfaces. The
solution of this boundary-value problem of the theory of large elastoviscoplastic deformations in a cylindrical system
of coordinates, r, 0, z will be sought in the class of functions u=u,(r, t), v = v (r, ) and P=P (r, z, t). Hence, the
boundary conditions of the problem will be

u(R,t) = u(rp, t) = V(R,t) = v(ry, t) =0

6o (rio (P 0, 1) = =p(1), & (ryl+u(ry, ),8) = 0 21

The kinematic constraints in relations (2.1) are the conditions for the material to adhere to the rigid walls and p(?) is
the pressure produced on one side of the plug (z=0). The coordinate r=r« is related to the maximum displacement u
of the boundary points of the plug and will be calculated below.

We will assume that up to the instant of time 79 =0 (p(0) = po) the material has been deformed elastically, and plastic
flow begins from this instant of time in the neighbourhood of the inner rigid wall. Hence, the elastic equilibrium state
at the instant of time 7y defines the initial condition for the subsequent process of irreversible deformation. We will
calculate the parameters of this stress-strain state.

According to Eq. (1.2), the strain tensor has two non-zero components

d =—lu2 d =lu

rr 2% rz 2% (22)

From relations (1.3), (1.4) and (2.2) we obtain the following relations for the components of the stress tensor, apart
from terms of the second order of smallness in the components of the displacement gradient,

1
O,, = Ogg = Gzz—uu?r = *(P+2H)—§(b+u)u2r = -, Grz = uu,r (23)

Using the equilibrium equations

o, G,,—Ogg
cs,z,,+crzz,z+—r-Z =0, 0,40, ,+— = 0 (2.4)
and boundary conditions (2.1), we obtain
2 22
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To calculate the constant ¢, we will use the plasticity condition (1.5), which, in the case considered, takes the form

Orelrer, = K 2.6)
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The final relations for the stress components have the form

R - o2
c,=c(l-2)+ an (r -1 +—;%—r*(1 +2]nr*)]

) . 2.7
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Since only the stress state of the material will satisfy relations (2.7), a region of plastic flow begins to develop from
the boundary r=ry.

3. Deformation in the case of unilateral plastic flow

When the loading pressure is increased further p(f) > pg the region of irreversible deformation turns out to be bounded
by the surfaces ro < r <ri(¢). In the region r(f) <r < R the material remains in the elastic state. This situation will be
maintained up to the instant of time 71, at which a new region of irreversible deformation appears and begins to develop
from the boundary surface r=R. We will indicate the parameters of the stress-strain state of the material in this time
interval.

Remaining within the framework of the quasi-static approach (neglecting forces of inertia), from the equilibrium
equations (2.4) we obtain for the region of reversible deformation

s(t) = c(t)z+a(t), o©,, = CL__t)r.,.i‘_ft_)

S T

Here a(?), c(t) and c1(¢) are unknown functions, where the dots indicate their derivatives with respect to time. When
integrating the equilibrium equations we took into account the condition u(R, 1) =0.
Following Murnahan’s formula (1.3) when p;; # 0, we can obtain, for the stresses in the of plastic flow region,

2 2
O, = Ogg = O, —4pe,, = — (P +20)-2(L +b)e,, = —5,(1), O©,, = 2le,, (3.2)
where we have taken into account the kinematic relations which hold in the case considered
_ 32 _ 12
€ = "Eerz’ € = ierz

On the other hand, by integrating the equilibrium equations in the plastic flow region ro <r <r(f), we can obtain

_m@r g, _mor, g

s1(1) = m()z+n(t), o, = 5 ™ 4ur (3.3)

The conditions of continuity of the stresses at the elastoplastic boundary r=r; () make it necessary to assume
m(t) = c(1), n(t) = a(t), g@) = c (1), s(1) = 5,(2)
The plastic potential (1.5) in the region of irreversible deformation can be written in the form
f(0,,€%) = o, — (k+meh)’ = 0 (3.4)
Following the associated law of plastic flow (1.6), we obtain from relation (3.4)
e’

= k+T|€rZ, A= Iﬁ 3.5
rz
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Comparing formulae (3.3) and (3.5) we obtain
ro_ l(c(t)r ¢ () )
8rz - n 2 + r k (36)

Substituting expressions (3.5) and (3.6) into relations (1.1) and (1.2), we can calculate the velocities of points and
their displacements in the plastic flow region

1 2k 1.
= 1;h(t, r,rg)— ?\—(r— ro) + _2_L_lh(t’ rry), U= Jv(t)dt .

h(t,r,ry) = C—‘(—t—)(rz - rg) + 201(t)ln1
2 o

The conditions for the displacement and its derivatives to be equal on the elastoplastic boundary r=r(f) lead to the
relations

2
ety + 220 ks =
1 1 2kt 1, 1 2k
Q_ﬁh(t, r()s R) = ﬁhl(t’ rl’ rO) - ?(rl - rO)’ 2_uh(t7 rO; R) = _h(ta r17 rO) - _ﬁ(rl - rO) (38)
)
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0

The function c;(%), like c(?), is given by the loading conditions (2.1): ¢(t) = - p(®). From relations (3.8) we obtain
for the unknown functions c;(¢) and c¢3(¢)

c3(t) = ktry - 102(t)rf

Rc(t ¢, (1) r\ 2kt r
c\(t) = nro( W1 _72)+ 2 (1-—rg—Zr%ln—l)+T(ro—rl+rlln;é))

o

(3.9)

From relations (3.8) and (3.9) we obtain a differential equation which defines the position of the boundary of the
plastic flow region r=r(¢)

kr, —cl(t)—c(t)rf/Z

S T () ket

(3.10)

The stresses, both in the elastic and viscoplastic flow regions, are found in the usual way for the kinematic motion
obtained. However, the solution obtained in this way only holds up to the instant of time #;, when, in the neighbourhood
of the external boundary surface r =R, the condition of plastic flow ¢ ,,(R, t;) = —k is satisfied, which, in the notation
employed, can be written in the form

1 2
kR+§c(t1)R = —c,(#)) (3.11)
Relation (3.11) is essentially the equation which defines the instant of time #; for the specified loading.

4. Calculation of the pressing process

Beginning from the instant #1, two viscoplastic flow regions, bounded by the surfaces ro <r <ri(f) and r(t) <r <R,
are present in the deformed material. In the region r{(f) < r < r»(¢) the pressed material remains in the elastic state. The
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parameters of the stress-strain state in this region are calculated in exactly the same way as the previous relations (3.1)

s(t) = btz +a,(t), S, = s,(t,1), s,(t,7) = b(é)’+b17(t)

, @.1)
w2 b W, ve
4u 1!

In the viscoplastic flow region ro < r < r(¢), the displacements and the velocities of the points are calculated using
the same relations (3.7), in which the functions of time c(), c¢1(f), c2(¢) and c3(f) must be replaced by their next values
b(1), b1(t), by(¢t) and b3(7).

When writing the plastic potential in the region () <r <R one must take into account that ,, <0 and ek < 0.
Then, in the case considered it follows from relations (1.5) and (1.6) that

P ep
6, =-k+meg,, A= —X 4.2
) ) ned, -k *2)

The kinematics of the viscoplastic flow in the region considered is found by the same method by which relations
(3.7) were previously obtained. This will have the same form as (3.7) with the functions b(), b1 (), b>(f) and b3(t), in
which, however, rp must be replaced by R, and the second term in the first relation is taken with a plus sign. Finally,
when calculating the displacement (a function of r and 7) as the integral of the velocity with respect to time, unlike
(3.7) the function of r, which appears in the integration, will now be non-zero and will be equal to

£y = = Lner R =2 Ry
r——nll,r, 5 r—

The conditions of continuity of the displacements, velocities and the derivatives of the displacements with respect
to r on the elastoplastic boundaries r=r1(f) and r=r,(¢) serve to determine the unknown functions b3(¢), b(f) and
b1(f), and also enable us to write the equations of motion of the boundaries: a differential equation for r=r(¢) and an
algebraic equation for r=r(f)

by(t)F:
2

by(t) = ktr, -

bz(t)(z' 2 A2 rl) 2kt( rl) b(tyry by(1)
d(t) = =—=[ri-ri-2rim2 |- 2= r - rg-rIn2 |- =0
(1) 2n ry—ro—<rn T n rn—-ro—n m Iy
4.3)

_Lbz(t)(z_ 2 2 2 .2 ﬂ)
bl(t)—ln?o( n ri-ro—-r,+R 2r11nr2r0 +

2kt( rlR] R°b(t),, -2 )
+=—|rg=ri+R-ry+rln— |+ ———=(1-75) - f(r
m o7 2 riins m ( 0) = f(ry)

kr, + b(1)r5/2 + b, (t)
(by(t) —cy(8)))ry + k(1))

ro= K +J( kt )2_(cz(tl)—bz(t))r§+2k(tl-t)r2+2c3(t,)
LT by \by(D) b,(1)

The functions a;(7), b(r)=—1"! p®) and by (t) = f b(t)dt are determined by the loading conditions.
Hence, the final solution of the boundary-value problem of the theory of elastovisco-plastic deformation in question
is given by the following relations:
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in the elastic core region r1(f) <r<rx(f)

b,(t )( 2 52 rl) 2kt( ”1)
u = Htrr+ ro—2riln— |-==|{r, —ry—r;In—
( 0) 2n r—ro 1) T T i
ok 4.4)
v=H t,r,R)+—=H(t,r,,R)—=(R~-r
33 R+ SH(, ry R = 2R = 1)
in the viscoplastic flow regions
1 1 2kt .
<r<ri(®):u=—=|\H@,r,ro)dt+ —H(t,r,rg) ——(r—-ry), V=1u
1(0) nJ. ( 0) o ( 0) n( 0) “4.5)
1 1 2kt .
r(t)<r<R:u = =|H(t,r,R)dt+ —H(t,r,R)+ =—(r-R)+ f(r), v=u
A1) JHG R+ S H( r R) + SR (r=R) + 4.6)
The stresses in all three regions are given by the relations
1
0, = Ogg = Hy(t,2), ©, = H(1, z)+as§(t, r), ©, = s,(t,71) 4.7)

In relations (4.5)—(4.7)

H(t,r,ry) = b(t )( -r§)+2bl(t)1nri
0

1 by(1) 2 52, 11
H](t,z) = b(t)(l_Z+2uH(t Vs r0)+ 21’] ( l—r0—2rllnr—0)_

—2—I“(r —ry—r lnr D Ty = —Zbl(t)
n 1 0 1 o * b(t)

The position of the elastoplastic boundaries is given by the solution of the equations from (4.3).
The case when, beginning at a certain instant of time #,, the loading pressure becomes constant, namely,

p(®)];5,, = p(t) = p; = const

is of interest.
The presence of a singularity of the function p(¢) at the instant of time # =t leads to the following changes in relations
(4.3)—~(4.7). In relations (4.3) and (4.7) and in the first relation of (4.4), b, (f) must be replaced by the function

by(ty) —b(t,)(t,—1)

In the region ro <r <ri(¢), it is necessary to add the following term to the relations for the displacements (4.5)
1 2 2
G(ry) = 2_1,]'(17202) —b(ty))t,)(r" —rg)

and the term G(R) to the similar relation (4.6).
We will present some characteristic results of the calculations obtained for the following values of the constants

kK = 0.00621, %0 = 001408, 2 =02 R_-og N¢

4
7 = 0.00

where the shear modulus .= 8.05 x 100 Pa.

In Fig. 1 we show the development of the zones of viscoplastic flow with time for a linear loading function
p(®)=po(l +at), where a>0 and pg corresponds to the occurrence of flow at the surface »r=ry. Note that, unlike a
viscoplastic medium, flow at the rigid surfaces does not begin to develop simultaneously. The dependences of the
dimensionless velocity vn/(ul) and the displacement u/l on the dimensionless radius r/I are shown in Figs. 2 and 3
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respectively at the instant of time a1, corresponding to the occurrence of flow on the surface r=R (the continuous
curves), and the instant of time oy when the loading pressure becomes constant (the dash-dot curves) and at a certain
current instant of time af; > at> (the dashed curves). The variability of the velocity in the region of the solid core,
unlike viscous plastic flow with a rigid core, is due to its being extended by elastic deformation.
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